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Researchers Keep Rejecting Grandmother Cells after
Running the Wrong Experiments: The Issue Is How Familiar

Stimuli Are Identified

Jeffrey S. Bowers,* Nicolas D. Martin, and Ella M. Gale

There is widespread agreement in neuroscience and psychology that the visual
system identifies objects and faces based on a pattern of activation over many
neurons, each neuron being involved in representing many different categories.
The hypothesis that the visual system includes finely tuned neurons for specific
objects or faces for the sake of identification, so-called “grandmother cells”, is
widely rejected. Here it is argued that the rejection of grandmother cells is
premature. Grandmother cells constitute a hypothesis of how familiar visual
categories are identified, but the primary evidence against this hypothesis
comes from studies that have failed to observe neurons that selectively respond
to unfamiliar stimuli. These findings are reviewed and it is shown that they are
irrelevant. Neuroscientists need to better understand existing models of face
and object identification that include grandmother cells and then compare the
selectivity of these units with single neurons responding to stimuli that can be

hypothesis, and as a consequence, do not
carry out experiments relevant to testing
more plausible versions of the theory. We
focus on one of the most common
theoretical confusions that has led to a
consistent failure to carry out relevant
experiments, namely, the claim that
grandmother cells constitute a theory of
how both familiar and unfamiliar cate-
gories are perceived. Researchers then
reject grandmother cells when they do
not find neurons that respond selectively
to unfamiliar stimuli (e.g., failing to find a
neuron that selectively responds to an
unfamiliar face). The problem with this,
however, is that grandmother cells con-

identified.

1. Introduction

The hypothesis that single neurons mediate the identification of
familiar visual categories (e.g., a familiar person) is often
dismissed in neuroscience. Indeed, researchers tend to use the
somewhat pejorative phrase “grandmother cell” to describe this
form of neural coding. Instead, it is widely claimed that visual
categories are identified on the basis of a pattern of activation
over many neurons, each neuron being involved in represent-
ing many different categories, so-called “distributed” or
“ensemble” coding. The distributed approach is thought to be
supported by theoretical considerations and empirical findings.
Indeed, single-cell recording studies are often taken to falsify
the grandmother cell hypothesis.!"!

In this article, we detail why the widespread dismissal of
grandmother cells is misguided. The core problem is that
researchers tend to consider straw-man versions of the
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stitute a theory of how familiar categories

are identified (e.g., how you identify your

grandmother and how I recognize mine).

Accordingly, the relevant question is how
neurons respond to familiar faces, objects, and words when
they are identified. As we detail below, relatively few studies
assess the selectivity of neurons under these conditions, but
there is evidence that neural selectivity is greater for familiar
than unfamiliar categories. Indeed, given the high level of
selectivity that has been reported with familiar visual categories
when they are identified, the grandmother cell hypothesis
should be considered a serious hypothesis rather than
dismissed out of hand.

This article is organized as follows: first, we describe in some
detail what we mean by the term grandmother cell and then
briefly describe a number of computational models of face,
word, and object identification in psychology and neuroscience
that implement grandmother cells. Second, we briefly review
studies that assessed the response selectivity of single neurons
in the monkey’s visual cortex to unfamiliar stimuli (e.g.,
unfamiliar faces or objects) or familiar stimuli that the monkey
was never trained to identify (novel stimuli that the monkey
repeatedly viewed without any need to categorize). Some of
these studies are reviewed in the text; others are just noted in
Table 1. Although these studies rarely report neurons that
responded selectively to one stimulus category (e.g., a specific
face), these studies are irrelevant to the grandmother cell
hypothesis because grandmother cells constitute a theory of
how familiar visual images are identified as members of
specific categories. Third, we review several studies that do
report highly selective responses in visual neurons when
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Table 1. Additional experiments that assessed response selectivity in visual cortex.

Year Paper Stimulus Trained to identify image? Conclusions regarding neural coding
2015 Dubois et al.? F, O, B No No mention of GMC (propose DC)
2015 Meyers et al.C! F,O,B No No mention of GMC (propose DC)
2015 Taubert et al.l"] F No Did not discuss coding

2012 Issa and DiCarlo® F No Did not discuss coding

2010 Freiwald and Tsaol® F, O, B No No mention of GMC (propose DC)
2008 Meyers et al.l" A No No mention of GMC (propose DC)
2007 Franco et al.!® F, O, Sc No Did not discuss coding

2006 Tsao et al.l” F, O, B No No mention of GMC (propose DC)
2005 Freedman et al.'” A No Did not discuss coding

2001 Keysers et al.""] F, O, Sc No No mention of GMC (propose DC)
2001 Sheinberg and Logothetis!'? o No Did not discuss coding

2001 Tamura and Tanakal'®! O, Sh No Did not discuss coding

1999 Sugase et al.l¥ F, Sh No No mention of GMC

1998 Booth and Rolls!"! O No Reject GMC (propose DC)
1997 Rolls et al.l'® F No Reject GMC (propose DC)
1996 Higuchi and Miyashital'”! P No Did not discuss coding

1995 Rolls and Toveel'® F No Reject GMC (propose DC)
1992 Young and Yamanel!'? F No Reject GMC (propose DC)
1985 Perrett et al.2! F No Agnostic

1984 Rolls!?"! F No Reject GMC (propose DC)
1984 Desimone et al.?? F, B No Reject GMC (propose DC)
1982 Perrett et al.[?’! F No No mention of GMC (propose DC)

A, animals; B, body parts; DC, distributed coding; F, faces; GMC, grandmother cell coding; O, objects; P, patterns; Sc, scenes; Sh, shapes .

monkeys were tested on familiar stimuli they could identify—
exactly the conditions in which grandmother cell theories
predict highly selective responding. Finally, we briefly mention
computational studies that show there are computational
advantages with grandmother cell representations. Together,
these empirical and computational studies show that it is
premature to reject grandmother cells.

1.1. What Is the Grandmother Cell Hypothesis?

A grandmother cell is a neuron that represents a single familiar
visual category, either a basic-level category (e.g., a cell that
represents the visual category “dog” or “bicycle”) or a
subordinate-level category (e.g., a cell that represents the visual
category “my bicycle” or a specific person such as “my
grandmother”). On this hypothesis, an object is identified at a
basic level or a subordinate level when the corresponding cell(s)
fires beyond some threshold.”” Grandmother cells are often
compared to highly sparse representations in which a visual
category is represented by a small number of neurons, each
neuron only contributing to the representation of a few
different visual categories. However, the grandmother cell
hypothesis is at the extreme end of the sparseness continuum:
a single neuron represents a single visual category.”*! It should
be noted that grandmother cell theories are not committed to
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the claim that all neurons are grandmother cells, and indeed,
some combination of grandmother cells and distributed
representations may work hand-in-hand in some tasks. By
contrast, critics of grandmother cell theories reject the
hypothesis that there are any grandmother cells. Within
psychology, the equivalent to a grandmother cell is a localist
representation in which single units in models encode specific
visual categories at a basic or a subordinate level. In this
situation, the model identifies inputs by activating single units
above some threshold. Unlike grandmother cells in neu-
roscience, localist representations in psychology are not
couched in neuroscience terms but, functionally, grandmother
cells and localist representations are equivalent.”***! Grand-
mother cells and localist representations constitute a hypothesis
about how all basic and subordinate visual categories are
identified, and not only about how we identify faces at a
subordinate level.

1.2. Understanding Grandmother Cells through Modeling

In order to better understand the grandmother cell hypothesis,
it is worth briefly reviewing a few models in computer science,
neuroscience, and psychology that include grandmother cells
(or their equivalent localist coding) in order to identify familiar
visual categories at a basic or a subordinate level. The initial
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motivation for many of these models was the observation that
the visual system is hierarchical: “simple” cells in the visual
cortex code for line orientations at a given retinal location and
neurons in subsequent layers of the hierarchy code for more
abstract (e.g., more spatially invariant) and complex stimuli.**!
According to the grandmother cell hypothesis, this process of
abstraction continues over multiple layers, the neurons at the
top of the visual hierarchy coding for complete objects or
persons in such a way that a single neuron responds more
strongly to images of this category compared to others. Hubel
himself considered whether grandmother cells are the natural
extension of his theory of early vision, writing:

“What happens beyond the primary visual area, and how is
the information on orientation exploited at later stages?
Is one to imagine ultimately finding a cell that responds
specifically to some very particular item (Usually
one’s grandmother is selected as the particular item, for
reasons that escape us). Our answer is that we doubt there is
such a cell, but we have no good alternative to offer.”!*”!

1.3. Grandmother Cells in Computer Science and
Neuroscience Models

Although Hubel doubts that there are cells that code for
visual categories at the top of the visual hierarchy, it is
important to note that there are many computational models
that have just this property. An early example in computer
science was the “neocognitron” model®” that was directly
inspired by Hubel and Wiesel’s model® of simple and
complex cells in the primary visual cortex (V1). The
neocognitron model roughly simulated the early processes
in V1 and continued the hierarchy of processing steps to a top
layer that coded each familiar category (written numbers
between zero and nine) with a single unit that selectively
responds to one number. Indeed, the authors used the term
“grandmother cell” to describe these selective units in their
model. The neocognitron was in turn one of the inspirations
for computational models in neuroscience that include units
that selectively represent familiar categories, such as the face
of a specific person.l*!

More recently, Thorpe and colleague have been
developing hierarchical artificial neural networks that incorpo-
rate the biologically plausible learning rule spike-time-depen-
dent-plasticity (STDP). STDP is an unsupervised form of
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learning that adjusts the connection strengths based on the
relative timing of a particular neuron’s output and input action
potentials. Importantly, for present purposes, models of object
identification that employ STDP often learn highly selective
units, as illustrated in Figure 1. In multiple papers, Thorpe
highlights the computational advantages of highly selective
representations and explicitly relates these selective representa-
tions to grandmother cells. For example, Thorpe wrote:

“I will discuss how a combination of STDP and temporal
coding can allow highly selective responses to develop to
frequently encountered stimuli. Finally, I will argue that
“grandmother cell” coding has some specific advantages not
shared by conventional distributed codes.”**!

1.4. Localist Models in Psychology

Within psychology, the interactive activation (IA) model of
visual word identification is an example of an early and
influential theory that coded for familiar categories (words) with
single units.*®) The IA model was again hierarchically
organized with localist letter features at the input layer, localist
letter detectors at a second layer, and localist word detectors at
the output layer. In this scenario, a specific word is recognized
when its localist word unit is activated beyond some threshold.
Localist representations are commonplace in theories in
psychology, including in models of visual word identification,®
models of spoken word identification,®”) spoken word produc-
tion,1*¥ face perception,[3 1 and many other domains of
theorizing.

Despite the existence of the above models, it is important to
emphasize that most theorists in psychology and neuroscience
strongly reject grandmother cells. For example, within psychol-
ogy, the localist word representations in the IA model are often
rejected in favor of distributed representations within the
parallel distributed processing (PDP) models of word identifica-
tions.*”! Even researchers who endorse localist codes in
psychological models are rarely committed to the claim that
their model is implemented with grandmother cells; instead,
the models are considered theories of cognition with no
commitments to neurophysiology. Furthermore, in computa-
tional neuroscience where the models are intended to make
claims about neural coding, it is very much a minority position
to endorse grandmother cells. The far more common claim is

Figure 1. The network was trained to recognize objects (as depicted in the top row), and neurons in the hidden layer of the network learned to
respond preferentially to image patterns that look like the objects (as depicted in the bottom row). That is, these neurons learned to represent
information much like grandmother cells. Reproduced with permission.?% Copyright 1982, Springer.
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that single neurons do not code for specific categories.*>*? As
Averbeck, Latham, and Pouget put it:

“As in any good democracy, individual neurons count for
little; it is the population of activity that matters.”t**!

Similarly, researchers who carry out single-cell recording studies
overwhelmingly reject grandmother cells. But as we show later, this
conclusion is compromised by the common assumption that
grandmother cells should code for unfamiliar visual categories.

To summarize, then, a grandmother cell theory is committed
to the claim that a subset of neurons selectively represents
familiar visual categories at the basic level and at the
subordinate level and that different grandmother cells encode
basic and subordinate visual categories (one cell coding for
the basic visual category “bicycle” and another cell coding for
the subordinate “my bicycle”). These selective representations
are hypothesized to support the identification of these familiar
stimuli when their activation goes beyond some threshold. The
grandmother cell hypothesis does not reject distributed
representations (both forms of representations may play a role
in vision), whereas critics of the grandmother cell hypothesis
claim that grandmother cells do not exist.

1.5. The Theoretical Confusion that Leads to the Premature
Rejection of Grandmother Cell Theory

Bowers has highlighted a number of confusions regarding
grandmother cells that have led researchers to reject only straw-
man versions of the hypotheses,’?”) such as the claim that there
is one grandmother neuron per visual category (such that a loss
of one neuron can lead to a failure to recognize your
grandmother)** and the claim that grandmother cells respond
to one category of input and remain entirely silent to all other
categories (contrary to the common observation that a neuron
responds above baseline to images from multiple cate-
gories).[*>*¢! But there is no reason to adopt these characteriza-
tions of grandmother cell theory. Indeed, the grandmother/
localist representations in the various models described above
do not have the property that they only respond to one category
of input and are silent to everything else. Rather they have the
property that they respond most strongly to one category and
less strongly to visually similar inputs from different categories.
Of course, visually similar inputs should not activate a
grandmother/localist unit beyond the threshold for identifica-
tion, and if they do, it would result in a misidentification of the
input. For a more detailed discussion and debate on this issue,
see refs. *7** Similarly, multiple redundant grandmother
cells are consistent with grandmother cell theory,***”*¢ and
indeed, redundant localist codes can emerge in artificial neural
network models after training,”” making the model more
robust to the removal of a single unit.

But here we focus on the false claim that grandmother cell
theories should explain how we perceive and identify unfamiliar
things. This leads researchers to falsely reject grandmother cells
on the basis that there are just not enough neurons in the brain
to code for all possible unfamiliar stimuli,***" and most critical
for present purposes leads researchers to falsely reject
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grandmother cells on the basis of not finding neurons that
respond selectivity to unfamiliar stimuli.

2. What Does the Research Show?

In order to review as many studies as possible, we describe
some of the most relevant papers in the text and list other key
studies in Table 1. In many or most studies reviewed below the
monkeys were repeatedly presented with the stimuli used to
drive visual neurons, either before the recording session or
during the recording session itself. For this reason, the authors
of these studies often report that the stimuli tested were
familiar. However, in most of these studies, the monkeys
simply saw the images passively without making any response,
or they performed some task that did not require them to
identify the images at the basic or at the subordinate level.
Accordingly, there is no reason to assume that the monkeys
were able to identify the images at the subordinate or basic
levels. Our main point is that if animals cannot identify the
stimuli, there is no reason to reject grandmother cells when
single neurons fail to respond selectively to these stimuli.

2.1. Chang and Tsao (2017)

We start with the Chang and Tsao study®® because it has
received a lot of attention, makes strong claims in support of
distributed over grandmother cell coding for face identification,
and it is the most recent of a series of papers by Tsao and
colleagues on the neural coding of faces (see Table 1 for other
related studies from this group).

The authors showed images of human faces to two monkeys
while recording from neurons from the middle lateral (ML)/
middle fundus (MF), and anterior medial (AM) regions of the
inferotemporal (IT) cortex that have previously been shown to
be involved in different aspects of face processing. The faces
were synthetic human faces that had been transformed in high-
dimensional space in order to assess the impact of various
transformations on neural firing (see Figure 2a for example
faces). The faces were presented for 150 ms, interleaved with
150 ms of a gray screen, each image being presented between
three and five times. The stimuli included 2000 images of
parametrized frontal faces, 2000 images of parameterized
profile faces, and the task of the monkeys was simply to fixate
on a fixation point for a juice reward, and accordingly, the faces
were just viewed passively. They reported that a pattern of
activation over approximately 200 neurons coded for specific
faces and took the findings to support distributed rather than
grandmother cell coding. In the “In Brief” summary of their
article, they wrote:

“Facial identity is encoded via a remarkably simple neural
code that relies on the ability of neurons to distinguish facial
features along specific axes in face space, disavowing the
long-standing assumption that single face cells encode
individual faces.”®?

But no theory (grandmother or otherwise) predicts that
single cells in monkey brains should selectively respond to
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T=target, D=distractor
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Figure 2. Stimuli used across multiple experiments: a) Chang and Tsao, Reproduced with permission.*? Copyright 2017, Elsevier. b) Rolls, Reproduced
with permission.”® Copyright 1995, The American Physiological Society. c) Lehky et al., Reproduced with permission.*! Copyright 2011, The American
Physiological Society. d) Rust and DiCarlo, Reproduced with permission.”* Copyright 2012, The Authors, published by the Society for Neuroscience. e)
Logothetis et al., Reproduced with permission.>! Copyright 1995, Elsevier. f) Sakai et al., Reproduced with permission.®® Copyright 1994, Cold Spring
Harbor Laboratory Press. and g) Kobatake et al., Reproduced with permission.””! Copyright 1998, The American Physiological Society.

unfamiliar human faces. In the same way, no theory should
expect to find neurons in the human visual cortex that
selectively responds to an unfamiliar monkey face.

The conceptual confusion of the authors was highlighted more
strongly in the interview with Doris Tsao, who said the following in
an interview linked with the Chang and Tsao (2017) paper:

“Before this work that is described in this paper itself...
people thought at the highest levels of the brain’s face
recognition system there are cells that are selective for
specific individuals, all the people that you know and
recognize there are cells encoding them.

And obviously this raised a question, which is how can one
have enough cells to represent all the people that you
possibly could recognize. There are 6 billion people on this
earth, and obviously you do not have 6 billion cells
specialized for face recognition in your brain. So it was a
mystery how it is ultimately done.”">®

The conclusion Tsao draws is that the brain must rely on
distributed coding rather than grandmother cells. But given this
conception of grandmother cells, it raises the question why the
authors even bothered using their data to argue against
grandmother cells, given that it was ruled out a priori on the
basis that there are not enough specialized neurons in a
monkey brain. Nevertheless, this same conclusion was drawn
by Quian Quiroga in a “Leading Edge Previews” article in the
same issue entitled “How Do We Recognize a Face?'!"
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He writes:

“As the authors argue, their results imply that there are no
detectors for face identity at the single neuron level in the
face patch system and, consequently, this may put an end to
the long-standing dispute about the existence of grand-
mother cells in visual cortex.”!!

2.2. Rolls (2017)

Rolls, in a special issue of a journal devoted to the topic of
grandmother cells, reviewed a number of findings from his
laboratory that he takes to falsify the grandmother cells.l*?! As
he writes in the abstract: “The encoding of information in the
primate inferior temporal visual cortex, hippocampus, orbito-
frontal cortex, and insula is described. All these areas have
sparse distributed graded firing rate representations.” However,
once again, this conclusion comes from studies in which
animals were presented with unfamiliar stimuli, or where the
familiarity of the stimuli was not discussed, and where the
animal was not needed to distinguish images one from another.

For example, the first study he summarizes was carried out
by Rolls and Toveel®® that assessed the neural coding of face
and object identity in the temporal visual cortex. This highly
cited paper assessed the firing selectivity of 14 neurons to a set
of 68 stimuli. None of the neurons responded selectively to one
of the stimuli, and Rolls takes the findings as inconsistent with
the grandmother cell hypothesis.*?! This is a strong conclusion
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to reach on the basis of recording from 19 neurons, but more
relevant for present purposes, the stimuli were composed of
unfamiliar human and monkey faces and unfamiliar nonface
stimuli that included images of woodland, countryside, and
foods: some of these images are reproduced in Figure 2b. The
monkey’s task was simply to look at the photos without
responding (the monkeys received a reward by licking a tube
between image trials), and accordingly, there was no pressure to
learn to identify the images. Given that the monkey was not
trained to identify the stimuli, the experiment does not test the
grandmother cell hypothesis.

A search of Google Scholar using the search terms “grand-
mother” and “Rolls” (as author) identifies 87 papers and, as far
as we can tell, there is only one paper where there was a brief
note that selectivity might be greater for familiar categories,!*"
but this was limited to a single paragraph where they simply
note that their findings “raise the possibility” (p. 213) that visual
experience may impact on the tuning of single neurons.

2.3. Lehky, Kiani, Esteky, and Tanaka (2011)

Lehky et al. recorded from IT cells of 674 monkeys, each
stimulated by 806 object photographs.©*) Although they found
some neurons to respond highly selectively, they failed to obtain
evidence for grandmother cells, writing:

“We believe that the data presented here do not support
“grandmother cell” coding.... On average, the second largest
response was almost the same size as the largest response
(89.3% for single-neuron responses, 79.5% for population
responses). This is not a characteristic of “grandmother cell”
coding.”®’!

But again, the conclusion is not justified, given that the
stimuli were not familiar and the monkeys were not trained to
discriminate between the stimuli (see Figure 2c for some
example images from this experiment). Interestingly, the
authors do leave the door open for grandmother cells for
familiar, meaningful stimuli, writing: “Nevertheless, it is still
possible that grandmother cell encoding could occur for a small
number of special objects to which the observer was highly
exposed, and which also had strong behavioral significance.”
Why such selective coding should be restricted to a few
categories with strong behavioral significance as opposed to all
visual categories that can be identified is unclear.

2.4. Rust and DiCarlo (2012)

Rust and DiCarloP* designed a study to measure V4 and IT
neuronal sparseness using a set of 300 natural images that
included an object in its natural context, each object being
distinct (it would be called by a different name). The authors
wrote that: “Images included a wide variety of content,
including objects familiar to the animal, other (unfamiliar)
animals, man-made objects, other monkeys, and people,” but
provided no analyses of whether the results were impacted on
familiarity. But the stimuli reported in their figures suggest that
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the vast majority of images would be unfamiliar and a few
example images are depicted here in Figure 2d. Indeed, the
authors appear to consider the familiarity of the images a
problem, writing: “To guard against possible nonstationary
effects (e.g., familiarity with the images), recordings were
altered between V4 and IT” (p. 10173). Again, the monkeys
were not required to discriminate between any of these images.
Based on the fact that they did not find any neurons that
selectively responded to the test images, the authors argue that
the visual system codes information in a distributed manner.
But again, no grandmother cell theory would predict selective
responding to the unfamiliar images, and the authors did not
specifically discuss or analyze the results for the familiar images in
the experiment. As summarized in Table 1, other studies have also
failed to observe highly selective responses of IT neurons in
response to stimuli that a monkey was not trained to identify.
There is yet another issue with some of the above studies that
further weakens the conclusions that have been drawn
regarding grandmother cells. That is, there is growing evidence
that monkeys are quite poor at recognizing faces and that they
recognize faces in a qualitatively different way than humans.*
The findings include the observation that monkeys require
extensive exposure and training in order to achieve only
moderate performance in identifying specific faces in a
laboratory setting, performance on matching tasks is worse
for faces than for other objects, and monkeys are no better at
matching familiar compared to unfamiliar faces (unlike
humans). In addition, Macaques show no inversion effects,
have no distinct ventral face-specific pathway, and no right
hemisphere specialization for faces. This further undermines
the common rejection of grandmother cells based on studies
that did not even train monkeys to identify (unfamiliar) faces.

3. Highly Selective Representations Are More
Often Found when Familiar Stimuli Are Tested

A number of studies®”*'%%) have reported that the selectivity of
neural firing increases as the stimuli become more familiar to the
animal and this alone suggests that the above results provide a
poor basis for characterizing the representations that support
object and face identification. But the important question for
present purposes is whether stimuli that can be identified at a
basic or at a subordinate level evoke levels of selectivity in visual
neurons that are consistent with grandmother cells.

The most high-profile set of experiments that have reported
highly selective neural firing in response to familiar stimuli
were recorded from the hippocampus and related structures in
humans (e.g., the “Jennifer Aniston” neurons®Y). It is
important to note, however, that these neurons are part of the
memory rather than the visual system, and accordingly, the
results are not directly relevant to the classic grandmother cell
hypothesis that is concerned with vision. Nevertheless, it raises
the question of whether similar levels of selectivity can be
obtained with familiar stimuli within the visual system.

In fact, as reviewed below, a few studies have reported highly
selective responses in IT cells when monkeys are presented
with stimuli they can identify, and, in one case, the level of
selectivity is as high as any selectivity observed in the
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hippocampus. Although many of the studies are quite old, they
are highly relevant today. Unfortunately, the central message
that selectivity can be extremely high for familiar objects in the
visual cortex seems to have been lost on the many recent
experimental single-cell recording studies reviewed above as
well as recent theoretical discussions of these ﬁndings;[l’GS’“]
but see Guntupalli and Gobbini'®”! for a counterexample.

3.1. Logothetis, Pauls, and Poggio (1995)

Logothetis et al.”® trained two monkeys to identify over 100
novel computer-generated objects from various viewpoints over
the course of months. After learning a substantial subset of
stimuli, the monkeys performed a visual matching task in
which they first fixated at a target stimulus from one viewpoint
and then saw a series of test stimuli from various viewpoints
that were from the same class or not, as illustrated in Figure 2e.
The monkeys categorized the objects as matching or mis-
matching while the authors recorded from 796 neurons in the
upper bank of the AM temporal sulcus. The neurons showed a
range of selectivity, a few (3/796; 0.37%) responding selectively
to only one object presented from any viewpoint, and a larger
set (93/796; 11.6%) responding selectively to a subset of views
of one of the known target objects but less frequently (or not at
all) to highly similar objects. These are perhaps the most
selective responses ever recorded in any part of the brain.
Critically, no selective responses were encountered for views
that the animal systematically failed to recognize. That is, highly
selective codes were associated with the ability to identify the
object. Furthermore, the authors found that the percentages of
cells responding to objects from a given class correlated with
the amount of training. This led the authors to write: “Thus, it
seems that neurons in this area may develop complex
configurational selectivity as the animal is trained to recognize
specific objects.”®!

3.2. Sakai, Naya, and Miyashita (1994)

Sakai et al®® trained monkeys to recognize 12 pairs of
computer-generated Fourier patterns while recording from
474 neurons in the Anterior Inferior Temporal cortex. One of
the two stimuli from a paper (the “cue”) was presented for 0.5 s
and after a 5 s delay, the paired associate image or a foil image
was presented side by side and the monkey had to select the
associate pattern to receive an award. This required the
monkeys to learn and discriminate these patterns. The authors
identified 89 neurons that responded most strongly to one of
the cue stimuli. The Fourier pattern cue stimuli were then
systematically manipulated in order to assess the impact of
varying the learned images on neural responses. In the vast
majority of cases, the neurons responded more strongly to the
trained pattern compared to the untrained transformed ones,
and in no case did the neuron respond more strongly to the
transformed pattern. This suggests that the neurons were tuned
to the trained visual patterns. This is exactly as one might
expect from a grandmother cell theory. See Figure 2f for an
example of trained images and manipulated images.
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3.3. Perrett, Smith, Potter, Mistlin, Head, Milner, and
Jeeves (1985)

Perrett et al.”?” recorded from cells in the superior temporal
sulcus of the macaque monkey in studies that were designed to
distinguish between faces from nonface stimuli (which is the
general category of the face rather than the identity of a specific
face). But during testing, the authors noted that some cells
responded to one familiar person more than others. For
instance, one cell responded more to a wide range of views of
one familiar person (Paul Smith, one of the experimenters)
compared to another (David Perrett, another experimenter),
such that the identity of the person (based on whole body, not
just face) could be determined by the activation of this one
neuron. Perrett and colleagues considered these findings to
highlight the role of learning on neural selectivity and their
findings were at least consistent with grandmother cell coding
schemes, writing:

“The responses of these cells have many of the properties
hypothesized for “gnostic units” and provide insight into the
final stages of visual processing leading to the recognition of
an object as a face and more specifically the identity of the
fact.”[¢®]

Note that the term “gnostic unit” is being used there the
same way as the grandmother cell.

3.4. Kobatake, Wang, and Tanaka (1998)

Kobatake et al. trained two monkeys to discriminate between 28
moderately complex shapes and then recorded from 131 cells in
IT cortex.””! A single shape (for examples, see Figure 2) was
displayed on a computer screen and it disappeared when it was
touched. After a short delay, the stimulus was displayed along
with four additional foils from the same set of 28 stimuli. The
task was to select the repeated stimulus. The training was
extensive and was completed when the monkeys performed 500
successful trials per day, with a success rate of over 75%. Neural
recordings to these stimuli were performed while these two
trained monkeys were under anesthesia, as well as 130 IT
neurons in two additional monkeys who were not trained to
identify and remember the stimuli.

For the trained monkeys, there were 28 cells that maximally
responded to one of the trained stimuli and for these neurons,
an average of three other stimuli from the trained set evoked
responses >50% of individual cells’ maximal response. Based
on this the authors concluded that “The broad tuning may
suggest that the discrimination depended on the activity of cell
population.” Unfortunately, however, the authors did not report
whether any of the 26 critical failed to respond strongly to other
stimuli (the overall average of three stimuli evoking strong
response may well have included some neurons that were more
selective). The failure to report the most selective responding
neuron is unfortunate. Importantly, the authors also reported
that the selectivity of the neurons was much greater for the
trained compared to nontrained monkeys, highlighting the fact
that selectivity is greater for stimuli that can be identified.

© 2019 WILEY Periodicals, Inc.
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3.5. Khuvis, Yeagle, Norman, Grossman, Malach, and
Mehta (2018)

To the best of our knowledge, Khuvis et al.!*! have provided the
first test of whether individual neurons in the human visual
cortex code for specific familiar faces. The authors recorded
from 63 neurons in the ventral temporal cortex across eight
patients. A set of images of ten famous faces as well as ten body
parts, ten houses, ten tools, and ten abstract patterns were
presented centrally and participants performed a one-back task
during recording, in which they indicated whether the current
stimulus matched the previous one. Twenty-six neurons were
found to be selective for the general category faces and seven for
nonface categories. However, within the face category, the
authors did not report any neurons that selectively responded to
one face. It will be important to see whether similar results are
obtained in humans in follow-up studies, especially if it is
possible to test a wider range of neurons and face images.

We want to be clear that we do not consider reports of
extreme selectivity in visual neurons in response to trained
stimuli as evidence in support of the grandmother cell
hypothesis. There are too few relevant studies, the results are
mixed, and it is perfectly plausible that the most selective
neurons are not so selective that they are tuned to maximally
respond to one visual category. Nevertheless, the most striking
demonstrations of selectivity are consistent with the grand-
mother cell hypothesis, and in our view, it is premature to reject
grandmother cells based on the current findings.

4, Conclusions and Outlook

We hope that most readers will accept our argument that it is
inappropriate to reject grandmother cells on the basis of testing
stimuli that cannot be identified, and it is an important
observation that neural selectivity is increased when familiar
stimuli are tested. At the same time, we expect many will
continue to dismiss the grandmother cell hypothesis. The
notion that among the billions of neurons in a brain there is a
subset of neurons tuned to code for specific categories might
seem implausible. We understand this intuition, but it is worth
emphasizing again that there are existing models of visual
object recognition that are designed to be biologically plausible
that have grandmother cells.?"! Indeed, there are biologically
plausible models of visual object identification that learn
grandmother cells.”” Even artificial neural network models
that are claimed to learn distributed codes in fact learn
grandmother representations when trained to coactivate multi-
ple words (or objects or faces) at the same time in short-term
memory.%”Y These findings suggest that there are computa-
tional advantages of grandmother cells in the context of short-
term memory, much like there are computational advantages of
learning highly selective representations in the hippocampus
for the sake of episodic memory.”?’ Grandmother cells have
also been observed in artificial neural network models that
learn to identify faces.””!

In our view, these computational considerations, in combina-
tion with the empirical findings above, should lead researchers
and theorists to take the grandmother cell hypothesis more
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seriously. Going forward, researchers need a better understanding
of existing models of face and object identification that include
grandmother cells, the conditions in which artificial neural
networks learn grandmother cells,*®”" and then design experi-
ments that compare the selectivity of these units to the selectivity
of visual neurons responding to stimuli that can be identified.
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